

Technisches Merkblatt

Biegeweiche Auflagerung

Herausgeber:

Bundesverband Spannbeton-Fertigdecken e.V. Paradiesstraße 208

12526 Berlin

Telefon: +49 (0) 30 61 69 57 - 30 Telefax: +49 (0) 30 61 69 57 - 40

E-Mail: info@spannbeton-fertigdecken.de Internet: www.spannbeton-fertigdecken.de

Mitherausgeber:

Vorbemerkungen

Um die biegeweiche Auflagerung von Spannbeton-Fertigdecken nachzuweisen, bieten der Eurocode und die DIN EN 1168 bisher keine konkreten Lösungen. Deshalb diskutierten die Hersteller das Modell von Dr.-Ing. Thomas Roggendorf (H+P Ingenieure GmbH) [1][2][3]. Dieses ist in der Fachwelt bekannt und anerkannt. Der Bundesverband Spannbeton-Fertigdecken, die Forschungsgesellschaft VMM Spannbetonplatten GbR und alle Hersteller empfehlen daher die Anwendung des Modells.

Eine der nächsten Weiterentwicklungen der DIN EN 1168 wird in naher Zukunft ebenfalls ein Rechenmodell beinhalten, was europäisch abgestimmt sein wird.

Bedingungen

Als biegeweiche Lagerung wird die Auflagerung von Spannbeton-Fertigdecken auf Trägern mit begrenzter Biegesteifigkeit bezeichnet. Biegeweich sind im Allgemeinen Auflagerträger mit einer Länge ≥ 2400 mm (mehr als 2 volle Platten liegen nebeneinander) und Verformungen größer L/2000 unter den seltenen (charakteristischen) Einwirkungen, die nach dem Fugenverguss auf das Verbundsystem aus Träger und Platten einwirken. Dabei ist L die Spannweite des Auflagerträgers bzw. der Abstand der Momentennullpunkte des Trägers bei Durchlaufsystemen. Bei einer Unterstützung der Träger im Bauzustand ist auch das Eigengewicht der Konstruktion beim Nachweis der Durchbiegung zu berücksichtigen.

Verformungen der Auflagerträger aus Kriechen dürfen vernachlässigt werden. Die Begrenzung der Durchbiegung sowie die Tragfähigkeit der Träger sind ohne Ansatz einer Verbundwirkung mit den Spannbeton-Fertigdecken nachzuweisen.

Das hier angewendete Modell ist für Spannbeton-Fertigdecken mit einer Breite von maximal 1.200 mm nachgewiesen. Größere Plattenbreiten wurden nicht untersucht.

Der zusätzliche Nachweis bei biegeweicher Lagerung ist dann erforderlich, wenn V_{Ed} / $V_{Rd.c}$ > 0,50 ist.

Querkraftwiderstand

Bei biegeweicher Lagerung ist der Querkraftwiderstand V_{Rd,c,bw} wie folgt zu bestimmen:

$$V_{Rd,c,bw} = f \cdot \frac{Ib_{w}(y)}{S_{c}(y) \cdot (1 + \alpha_{comp} k_{xz,c} m \mu)} \left(\sqrt{f_{ctd}^{2} + \sigma'_{cp}(y) f_{ctd} - \left(\sqrt{1 + \frac{\sigma_{cpx}}{f_{ctd}}} k_{v} \tau_{zy,c} \right)^{2}} - \tau'_{cp}(y) \right) \leq 0.8 \cdot V_{Rd,c}$$

mit:

 α_{comp}

Beiwert zur Berücksichtigung des Anteils der Einwirkungen nach Aktivierung einer Verbundwirkung mit dem Träger (bezogen auf den Tragwiderstand)

$$\alpha_{comp} = \frac{V_{Ed,comp}}{V_{Rd,c,bw}}$$

 $V_{Ed,comp}$:

Querkraftbeanspruchung der Platte nach Aktivierung einer Verbundwirkung mit dem Träger (i.d.R. durch Fugenverguss)

ohne Unterstützung des Trägers im Bauzustand i.d.R. V_{Ed,comp} = V_{Ed,∆g} + V_{Ed,q} mit Unterstützung des Trägers im Bauzustand i.d.R. V_{Ed,comp} = V_{Ed}

Im Allgemeinen ist eine iterative Berechnung erforderlich;

vereinfachend darf unter Ansatz von

$$\alpha_{comp} = \frac{V_{Ed,comp}}{0.4 \cdot V_{Rd,c}}$$

auf eine iterative Berechnung verzichtet werden

Querschnittsparameter nach Tabelle 1 oder nach [4][5] $k_{xz,c}$

$$k_{xz,c} = \frac{1}{2} \frac{h_{sl,eff}}{b_{sl}}$$

Anzahl der Stege des Plattenquerschnitts m

Beiwert zur Berücksichtigung der Verbundwirkung zw. Träger und Platten μ

$$\mu = 0.2 + 1.1 \cdot 10^{-3} \cdot h$$
 Träger ohne verbundsteigernde Maßnahmen (1)

$$\mu = 0.8 + 1.1 \cdot 10^{-3} \cdot h$$
 Träger mit verbundsteigernden Maßnahmen (1

$$\sigma_{\text{cpx}}$$
 $\sigma_{cpx} = \frac{P_{t}(l_{x})}{\Delta} > 0$ (positiv bei Druckbeanspruchung)

 k_{v} Beiwert zur Berücksichtigung einer Querbiegebeanspruchung

$$k_{v} = 1 + \frac{L^{3}}{EI_{b}} \frac{EI_{sl,q}}{{b_{sl}}^{3}} \cdot \frac{V_{Ed,b,comp}}{v_{Ed,comp} \cdot L_{b}}$$

Trägerspannweite [m] L bei Durchlaufträgern Abstand der Momentennullpunkte im Feldbereich

als verbundsteigernden Maßnahmen sind z.B. Profilierungen der Trägerstege einzuordnen, wenn diese bis in den unteren Bereich der Plattenstirnfläche oberhalb der Lagerfuge reichen [1][2][3].

 EI_b Biegesteifigkeit des Trägers [MNm²] bei Stahlbeton, Spannbeton und Verbundträgern unter Berücksichtigung der Rissbildung, im Allgemeinen $EI_b^{\ II} = 0,5$ $EI_{b,\ elast}$

 b_{sl} Plattenbreite [m] mit $b_{sl} = 1,2$ m (auch bei Passplatten)

 $El_{sl,q}$ Querbiegesteifigkeit des Plattenquerschnitts [MNm²] für $b_{sl} = 1,2$ m

$$I_{sl,q} = i_{sl,q} \cdot l_x$$

i_{sl,q} Querschnittsparameter nach Tabelle 1 oder nach [4][5]

 $I_x = a + h/2$ [mm] (mit a: Auflagerlänge)

 $V_{\text{Ed,b,comp}}$ Querkraftbeanspruchung des Trägers am Auflager durch Lasten nach Aktivierung einer Verbundwirkung mit den Platten (i.d.R. durch Fugenverguss), $V_{\text{Ed,b,comp}} = v_{\text{Ed,comp}} \cdot L_b$ bei symmetrischer Belastung des Trägers durch Lasten aus zwei Deckenfeldern, $v_{\text{Ed,comp}} = V_{\text{Ed,comp}}/b_{\text{sl}}$

 $\tau_{zy,c}$ Schubspannung infolge Querschub

$$\tau_{zy,c} = \frac{3}{2} k_{zy,c} m \mu \frac{V_{Ed,comp}}{b_w(y) l_x}$$

k_{zv,c} Querschnittsparameter nach Tabelle 1 oder nach [4][5]

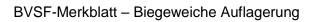
Querschnittsparameter

Die Parameter für die am Markt befindlichen Querschnitte sind in der folgenden Tabelle 1 zusammengefasst. Die Werte stammen aus den Gutachten G11-023 [4] und G13-014 [5]. In diesen Veröffentlichungen sind auch die Hintergründe zur Berechnung zu finden.

Bei Platten, die nicht in der folgenden Tabelle enthalten sind, können die Querschnittswerte nach [4] und [5] berechnet werden. Hilfreich sind auch die Diagramme ab Seite 86 des Gutachten G11-023 [4].

Für die Querschnittsparameter in der Tabelle 1 sind die Hersteller verantwortlich und stehen bei Fragen zur Verfügung.

Tabelle 1: Querschnittsparameter aus [4] und [5] sowie Ergänzungen der Hersteller


Nr.	Plattentyp	bez. Flächenmoment 2. Ordnung in Querrichtung	bezogene Querkraft aus Stabwerkmodell	bezogene Querkraft aus Stabwerkmodell		
		i _{sl,q}	$k_{zy,c} = V_{y,c}/c_{STBW}$	$k_{xz,c} = V_{z,c}/c_{STBW}$		
	[-]	[mm⁴/mm]	[-]	[-]		
Α	Querschnitte <i>h_{sl}</i> ≤ 200 mm					
A1	Brespa V8/160-105	94.400	0,074	0,059		
A2	Brespa A15B	137.800	0,057	0,054		
А3	Brespa A180	166.600	0,055	0,067		
A4	Brespa A20B	150.900	0,083	0,068		
A5	Brespa V6/200-140	87.100	0,083	0,077		
A6	Brespa V20L	84.700	0,090	0,076		
A7	Brespa A20Q	223.200	0,062	0,068		
A8	VBI A 200	145.900	0,084	0,074		
A9	VMM-VSD 12	97.200	0,063	0,040		
A10	VMM-VSD 14	125.400	0,059	0,049		
A11	VMM-VSD 15-3	137.800	0,057	0,054		
A12	VMM-VSD 15-5	166.400	0,070	0,047		
A13	VMM-VSD 16-3	148.800	0,056	0,058		
A14	VMM-VSD 16-5	181.800	0,068	0,051		
A15	VMM-VSD 18-3	166.600	0,055	0,067		
A16	VMM-VSD 18-5	206.500	0,064	0,060		
A17	VMM-VSD 20-3	178.900	0,054	0,076		
A18	VMM-VSD 20-5	223.200	0,062	0,068		
A19	VMM-L - SCD 20	125.300	0,103	0,087		
A20	Variax V8/160-100	117.924	0,075	0,058		
A21	Variax V8/160-110	71.148	0,072	0,060		
A22	Variax V8/180-100	180.205	0,084	0,062		
A23	Variax V8/180-110	155.422	0,079	0,064		
A24	Variax V8/200-100	236.183	0,094	0,066		
A25	Variax V8/200-110	131.041	0,089	0,069		
A26	Variax V6/200-145	91.150	0,087	0,078		
A27	Variax V6/200-150	67.029	0,085	0,079		
A28	VarioPlus VP/165-8 S	109.521	0,078	0,060		
A29	VarioPlus VP/200-6 S	158.128	0,085	0,068		

Nr.	Plattentyp	bez. Flächenmoment 2. Ordnung in Querrichtung	bezogene Querkraft aus Stabwerkmodell	bezogene Querkraft aus Stabwerkmodell	
		i _{sl,q}	$\mathbf{k}_{\mathrm{zy},c} = \mathbf{V}_{\mathrm{y},c} / \mathbf{c}_{\mathrm{STBW}}$	$\mathbf{k}_{xz,c} = \mathbf{V}_{z,c}/\mathbf{c}_{STBW}$	
	[-]	[mm ⁴ /mm]	[-]	[-]	
A30	Contiga Tinglev TE 180	163.219	0,069	0,061	
A31	ELBE EFD 12-3	7.200	0,630	0,040	
A32	ELBE EFD 15-3	137.800	0,057	0,054	
A33	ELBE EFD 16-5	181.800	0,068	0,051	
A34	ELBE EFD 18-3	166.600	0,055	0,067	
A35	ELBE EFD 18-5	206.500	0,064	0,060	
A36	ELBE EFD 20-3	178.900	0,054	0,076	
A37	ELBE EFD 20-5	223.200	0,062	0,068	
A38	Goldbeck SPG20	100.854	0,076	0,090	
В	Querschnitte 200 < h _{sl} ≤	240		·b	
B1	Brespa A22B	154.000	0,083	0,077	
B2	VMM-VSD 22	219.300	0,057	0,082	
В3	VMM-VSD 24	212.500	0,055	0,089	
B4	VMM-L - SCD 24	143.000	0,105	0,097	
B5	Variax V6/220-145	147.515	0,092	0,082	
В6	Variax V6/220-150	110.678	0,088	0,083	
В7	Contiga Tinglev TE 220	117.476	0,096	0,081	
B8	ELBE EFD 22-3	219.300	0,057	0,082	
В9	Goldbeck SPG26	154.004	0,112	0,105	
С	Querschnitte 240 < h _{s/} ≤ 280				
C1	Brespa A26B	134.000	0,087	0,097	
C2	Brespa MV5/265-167	118.200	0,106	0,112	
C3	VBI A 260	167.100	0,087	0,096	
C4	VMM-VSD 25-3	227.000	0,056	0,095	
C5	VMM-VSD 25-5	258.200	0,061	0,092	
C6	VMM-VSD 27	264.500	0,063	0,096	
C7	VMM-L - EPD 27	109.200	0,121	0,102	
C8	VMM-L - SCD 27	140.000	0,106	0,111	
C9	Variax V5/250-163	185.314	0,106	0,095	
C10	Variax V5/265-163	186.750	0,106	0,101	
C11	VarioPlus VP/265-6 S	156.176	0,102	0,099	

Nr.	Plattentyp	bez. Flächenmoment 2. Ordnung in Querrichtung	bezogene Querkraft aus Stabwerkmodell	bezogene Querkraft aus Stabwerkmodell
		i _{sl,q}	$k_{zy,c} = V_{y,c}/c_{STBW}$	$k_{xz,c} = V_{z,c}/c_{STBW}$
	[-]	[mm⁴/mm]	[-]	[-]
C12	Contiga Tinglev TE265	128.570	0,120	0,099
C13	ELBE EFD 25-3	227.000	0,056	0,095
C14	ELBE EFD 25-5	258.200	0,061	0,092
C15	ELBE EFD 27-3	264.500	0,063	0,096
C16	ELBE EID 27	109.200	0,121	0,102
D	Querschnitte 280 < h_{sl}	320		
D1	Brespa A32B	115.500	0,134	0,136
D2	Brespa A32N	205.300	0,086	0,122
D3	VBI A 320	205.300	0,086	0,122
D4	VMM-VSD 28-3	279.200	0,066	0,094
D5	VMM-VSD 28-5	322.900	0,069	0,090
D6	VMM-VSD 30-3	230.600	0,059	0,127
D7	VMM-VSD 30-5	260.400	0,063	0,129
D8	VMM-L - EPD 32	124.600	0,124	0,132
D9	VMM-L - SCD 32	152.200	0,100	0,132
D10	Variax V4/320-215	139.887	0,134	0,127
D11	VarioPlus VP/320-4 S	172.149	0,129	0,122
D12	Contiga Tinglev TE320	178.403	0,109	0,125
D13	ELBE EFD 30-5	260.400	0,063	0,129
D14	ELBE EID 32	124.600	0,124	0,132
D15	Goldbeck SPH32	175.377	0,126	0,109
Е	Querschnitte 320 < h _{s/} 5	<u>360</u>		
E1	VMM-L - EPD 35	148.700	0,129	0,144
E2	VMM-L - SCD 35	148.400	0,100	0,143
E3	Variax V4/350-215	248.227	0,144	0,133
F	Querschnitte 360 < h _{s/} 5	≤ 400		
F1	Brespa A40B	161.600	0,137	0,177
F2	Brespa A40N	261.500	0,089	0,154
F3	VBI A 400	261.500	0,089	0,154
F4	VMM-L EPD 40	142.200	0,130	0,167
F5	VMM-L - SCD 40	151.600	0,104	0,163

Nr.	Plattentyp	bez. Flächenmoment 2. Ordnung in Querrichtung	bezogene Querkraft aus Stabwerkmodell	bezogene Querkraft aus Stabwerkmodell	
		i _{sl,q}	$k_{zy,c} = V_{y,c}/c_{STBW}$	$\mathbf{k}_{xz,c} = \mathbf{V}_{z,c}/\mathbf{c}_{STBW}$	
	[-]	[mm⁴/mm]	[-]	[-]	
F6	Variax V4/400-213	180.734	0,133	0,154	
F7	VarioPlus VP/400-4 S	129.483	0,143	0,166	
F8	Contiga Tinglev TE400	170.351	0,115	0,176	
F9	ELBE EID 40	142.200	0,130	0,167	
F10	Goldbeck SPH40	166.889	0,155	0,134	
G	G Querschnitte <i>h_{sl}</i> > 400				
G1	VMM-L - EPD 45	136.800	0,132	0,190	
G2	VMM-L - EPD 50	149.100	0,130	0,213	
G3	ELBE EID 50	149.100	0,130	0,213	

Weitere Randbedingungen und Ausführungshinweise

Die Durchbiegung des Trägers darf unter den seltenen (charakteristischen) Einwirkungen den Wert L/300 nicht überschreiten. Dabei sind ggf. zeitabhängige Verformungen und eine mögliche Steifigkeitsabminderung zu berücksichtigen.

Bei Trägerdurchbiegungen kleiner als L/2000 unter den seltenen (charakteristischen) Einwirkungen, die nach dem Fugenverguss auf das Verbundsystem aus Träger und Platten aufgebracht werden (bei einer Unterstützung des Trägers im Bauzustand wird auch das Eigengewicht der Konstruktion erst nach dem Fugenverguss auf das Verbundsystem aufgebracht) darf der Querkraftwiderstand $V_{Rd,c}$ nach DIN EN 1168, Abschnitt 4.3.3.2.2.2 in Ansatz gebracht werden. Eine mögliche Steifigkeitsabminderung der Auflagerträger ist dabei zu beachten, Kriechverformungen dürfen vernachlässigt werden.

Die Begrenzung der Durchbiegung sowie die Tragfähigkeit der Träger sind ohne Ansatz einer Verbundwirkung mit den Spannbeton-Fertigdecken nachzuweisen.

Vollquerschnitte mit einer Breite von < 1200 mm (zum Beispiel 600 mm) gelten nicht als Passplatten. Passplanen sind Platten, die aus einem Vollquerschnitt durch einen Längsschnitt herausgeschnitten werden.

Passplatten dürfen nicht als Randplatten bei Einfeldträgersystemen bzw. neben den Momentennullpunkten bei Durchlaufträgersysteme verwendet werden. In den anderen Bereichen dürfen diese zur Anwendung kommen. Falls $V_{Ed} > 0,5 \ V_{Rd,c}$ ist und eine entsprechende höhere Querkrafttragfähigkeit bei biegeweicher Lagerung mit dem beschriebenen Modell nachgewiesen wurde, dürfen die Stege der Platten in den beschriebenen Bereichen (Rand oder Momentennullpunkte) im Abstand von 1,50 m von ihrem Auflager keine Durchbrüche, Auswechselungen oder sonstige Schwächungen aufweisen.

Die Querkrafttragfähigkeit von Vollquerschnitten mit einer Breite < 1200 mm bei biegeweicher Lagerung darf durch Multiplikation der Tragfähigkeit bei starrer Lagerung mit dem Faktor $V_{Rd,c,bw}/V_{Rd,c}$ für einen gleichförmigen Querschnitt mit b_{sl} = 1200 mm ermittelt werden. Platten mit einer Breite b_{sl} > 1200 mm können nach diesem Merkblatt nicht bemessen werden.

Die Platten sind auf Elastomerstreifen mit Dicken t ≥ 10 mm zu lagern, um eine vollflächige Lagerung sicherzustellen.

Verwendete Unterlagen

- [1] Roggendorf, T.: Zum Tragverhalten von Spannbeton-Fertigdecken bei biegeweicher Lagerung. Dissertation, Lehrstuhl und Institut für Massivbau, RWTH Aachen, 2010.
- [2] Roggendorf, T., Hegger, J.: Querkraftbemessung von Spannbeton-Fertigdecken bei biegeweicher Lagerung Teil 1: Modellentwicklung. Beton- und Stahlbetonbau 106, Heft 8, S. 531-539, 2011.
- [3] Roggendorf, T., Hegger, J.: Querkraftbemessung von Spannbeton-Fertigdecken bei biegeweicher Lagerung Teil 2: Modellkalibrierung und -validierung. Betonund Stahlbetonbau 106, Heft 10, S. 685-693, 2011.
- [4] Hegger J., Kerkeni N., Roggendorf T.: Querkraftbemessung von Spannbeton-Fertigdecken bei biegeweicher Lagerung. Gutachten G11-23, H+P Ingenieure GmbH&Co. KG, Aachen, 21.06.2011.
- [5] Hegger J., Kerkeni N., Roggendorf T.: Querkraftbemessung von Spannbeton-Fertigdecken bei biegeweicher Lagerung - Ergänzungsgutachten. Gutachten G13-014, H+P Ingenieure GmbH&Co. KG, Aachen, 09.07.2014.
- [6] Deutscher Ausschuss für Stahlbeton (DAfStb) Richtlinie: Herstellung und Verwendung von zementgebundenem Vergussbeton und Vergussmörteln. Berlin, 2006.

